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1 Introduction

1.1 Motivation

Dielectric spectroscopy measures the dielectric permittivity as a function of frequency and
temperature. It can be applied to all non-conducting materials. The frequency range ex-
tends over nearly 18 orders in magnitude: from the µHz to the THz range close to the
infrared region. Dielectric spectroscopy is sensitive to dipolar species as well as localised
charges in a material, it determines their strength, their kinetics and their interactions.
Thus, dielectric spectroscopy is a powerful tool for the electrical characterisation of non-
conducting or semiconducting materials in relation to their structure and also of electronic
or sensor devices. The lab experiment is an introduction into basic concepts and measure-
ment practise of this widely used technique.

It is highly recommended to study this manual in detail. It is already rather concise.
There is no textbook which can be alternatively recommended for an introduction.
In the text, there are a few Checkpoints. They test your understanding of the basic
concepts; you should be prepared to answer the questions in the discussion with the tutor
prior to the experiment. Selected topics will be included in the lab report.

1.2 Physical and mathematical concepts

� Electric polarisation
� Debye’s theory of dielectric relaxation
� Equivalent-circuit analysis
� Dielectric relaxation in condensed matter, particularly in polymers

1.3 Equipment

� Hewlett Packard model 4284A precision impedance meter (ac bridge)
� Dielectric-sample holder
� Novocontrol QUATRO cryosystem

1.4 Tasks

1. Impedance spectrum of a R − C model circuit
Measure the frequency dependence of the capacitance of a R − C unit representing
a homogeneous dielectric specimen with a finite dc conductivity and with a Debye
relaxation supplied with ideal contacts. Discuss the response function by use of an
appropriate representation of data. Determine the characteristic quantities which
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describe the dielectrical properties of the specimen. Neglecting the dc conductivity,
calculate the maximum frequency of the dissipation factor and compare it with the
experimental value.

2. Dielectric spectrum of ice
Measure the dielectric spectrum of ice at three fixed temperatures between −50 ◦C and
−5 ◦C . Discuss the frequency and temperature dependence of the permittivity by
use of the Cole-Cole representation and by comparison with the Debye response.

3. Dielectric spectroscopy on a polymer film
Measure the temperature dependence of the dielectric permittivity of an amorphous
polymer film containing one kind of strong molecular dipoles at three fixed frequen-
cies. Explain the result qualitatively by use of structural and thermal data which
will be given below. Calculate the effective dipole moment of the molecular dipoles.

2 Theoretical background

2.1 Electric polarisation

When a metal body is exposed to an electric field, free electrons are displaced by electric
forces until the field in the body vanishes. In an ideal dielectric (dc conductivity is zero)
there exist only bound charges (electrons, ions) which can be displaced from their equilib-
rium positions until the field force and the oppositely acting elastic force are equal. This
phenomenon is called displacement polarisation (electronic or ionic polarisation). A dipole
moment is induced in every atom or between ion pairs. In molecular dielectrics, bound
charges can also form permanent dipoles. The molecular dipoles can only be rotated by an
electric field. Usually, their dipole moments are randomly oriented. In an external field,
however, an orientation parallel to the field direction is preferred, so that a dipole moment
is induced. This process is called orientational polarisation.
Now consider an arbitrarily shaped dielectric sample with two metal electrodes partially
covering the surface at opposite faces. The polarisation ~P is defined as dipole moment per
unit volume:

~P =
d~mel

dV
, (1)

where ~mel is the dipole moment, defined by

~mel =
N∑

i=1

qi~ri . (2)

Here, qi and ri are the charges and their coordinates, respectively, and N is the number
of dipoles. It follows that for homogeneous, isotropic materials the static polarisation is
given by

~P = ND ~mel , (3)
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where ND is the dipole density, defined as ND = N/V .
The induced dipole moments create an internal field, which lowers the external field.

Therefore, the polarisation saturates at higher field strengths. The resulting mean internal
field is called the macroscopic electric field ~E. This field is also considered in the Maxwell
equations. At small fields the polarisation is proportional to ~E:

~P = ε0χ~E , (4)

where ε0 is the permittivity of free space and χ is the electric susceptibility of the material.
In real dielectrics non-linearities occur if space charges or dipolar domains exist.

Due to the polarisation process, an image charge Q occurs on the metal electrodes
adding to the displacement charge which is present in vacuum. The charge per unit area
deposited on the electrodes is called the electric displacement ~D:

~D =
dQ

dA
·

~A

A
, (5)

where ~A is the vector normal to electrode area and A is its absolute value. In linear
dielectrics (no space charges and no domain formation) and for low electric fields (far
below saturation), the electric displacement is proportional to the macroscopic electric

field. Then ~D can be separated into the vacuum contribution and the contribution of the
material:

~D = ε0εr
~E = ε0

~E + ~P = ε0
~E + ε0(εr − 1) ~E . (6)

εr is the relative permittivity of the material. With Eq. (4) it follows that εr = χ + 1.
The macroscopic field has to be distinguished from the local field Eloc acting on an

atomic or molecular unit which involves the fields of its electrically charged environment.
It was shown by Lorentz that in cubic crystals as well as amorphous solids (including
polymers) the local field is given by

~Eloc =
εr + 2

3
~E . (7)

The field dependence of the orientational polarisation is given by Langevin’s equation:

~P = ND~µL(x) . (8)

ND is the density of the permanent dipoles, ~µ their dipole moment and L(x) the Langevin
function, given by

L(x) = cos θ = cothx −
1

x
(9)

with

x =
~µ~Eloc

kT
. (10)
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cos θ is the mean value of the cosine of the tilt angles of all dipole moments with respect
to the field direction, k is Boltzmann’s constant and T the temperature.
For small field strengths (far from saturation) L is approximately given by

L(x) =
x

3
. (11)

With Eq. (4) and Eq. (7) and εr = χ + 1, it follows that for cubic crystals as well as
amorphous materials

χ =
χ + 3

3
·
ND~µ2

3ε0kT
=

χ + 3

3
·
Cel

T
. (12)

Cel is the electrical Curie constant, and Eq. (12) is Curie’s law. It relates the macroscopic
quantity “susceptibility” to the microscopic quantities “dipole concentration” and “dipole
moment”. If the dipole concentration is known then the dipole moment can be calculated
by this expression.

In an alternating electric field, the displacement polarisation leads to electric oscilla-
tions. This is a resonant process with resonant frequencies of 1015 to 1014 Hz for the
electronic and 1013 to 1012 Hz for the ionic polarisation.
The orientational polarisation is not a resonant process, because the molecular dipoles
have inertia. The response of the orientational polarisation to a change of the electric
field strength is therefore always retarded. This process is called dielectric relaxation. The
characteristic time constant of such a relaxation process - this is the time for reaching new
equilibrium after changing the excitation - is called the relaxation time τ . It is strongly
temperature dependent, because it is closely related to the viscosity of the material. At
room temperature, the relaxation times of the orientational polarisation in crystals are
10−11 to 10−9 s. In amorphous solids and polymers, however, they can reach a few seconds
or even hours, days and years, depending on temperature.

Real dielectrics also contain charge carriers which can be moved by electric forces be-
tween potential walls, formed by non-ohmic or blocking contacts or internal boundaries,
e. g. between crystalline and amorphous phases in a semicrystalline material. This leads to
a space charge polarisation (electrode polarisation or Maxwell-Wagner polarisation, respec-
tively), which on the other hand is limited by diffusion. These processes are also relaxation
processes, and are called charge-carrier relaxations. Because these processes are closely re-
lated to the conductivity, they are sometimes also named conductivity relaxations. The
relaxation time τc of a conductivity relaxation is given by

τc =
ε0εr

σdc

, (13)

where σdc is the dc conductivity of the material. It reaches about one hour for σ =
10−15(Ωcm)−1.
As long as the polarisation is linear with respect to the electric field it is not possible to
distinguish whether a molecular dipole is rotating or a unipolar charge carrier is hopping
between two equilibrium positions. However, due to this relation, the relaxation time of

5



a charge-carrier relaxation is generally larger than the relaxation times of the dipolar re-
laxations in the same material and for a given temperature. Furthermore, charge-carrier
relaxations are generally more efficient in dielectric measurements because the charges are
displaced for longer distances than in the case of rotating dipoles.

The displacement polarisation is always present. Therefore, Eq. (6) has to be modified:

~D = ε0εr
~E = ε0

~E + ε0(ε∞ − 1) ~E + ε0(εr − ε∞) ~E = ~DV ac + ~PRes + ~PRel . (14)

ε∞ is the so-called unrelaxed permittivity, because it is also present nearly immediately
after switching on the field or at very high frequencies (infra-red and optical), where all

relaxation processes cannot follow the field changes. ~DV ac, ~PRes and ~PRel are the vacuum
contribution, the resonance contribution and the relaxation contribution to the electric
displacement, respectively.
The limit εr(t → ∞) is called the static permittivity εs. Thus, the static polarisation is

~PRel,s = ε0(εs − ε∞) ~E = ε0∆ε ~E . (15)

∆ε is called the relaxation strength. Note that εs, ε∞ and ∆ε are defined for a single re-
laxation process. Generally, more than one relaxation process exist in a given material. In
this case these quantities have to be specified separately for each process.

The build-up and decay of the polarisation can be studied by connecting the electrodes

with an ammeter and measuring the displacement current density ~J = ~̇D after or during
a well-defined change of the applied field. Usually, E(t) is a step function or a sinusoidal
function. These measuring regimes are called the time domain and the frequency domain,
respectively.

In the following passages we restrict ourselves to a parallel-plate capacitor filled with a
homogeneous and isotropic dielectric. Then the matrixes ε, χ and σ become scalars and
the vectors ~E, ~D and ~P have only components perpendicular to the area of the plates. We
further restrict ourselves to small field strengths where the polarisation is proportional to
the electric field. Finally, we restrict ourselves to a spatially uniform polarisation.

2.2 Debye relaxation

The time dependence of the polarisation after a step in the applied field is assumed to be
given by the simple first-order kinetics

ṖRel(t) = τ−1[(PRel,s − PRel(t)] . (16)

Now consider a system consisting of a certain number of one kind of spherical and non-
interacting molecular dipoles rotating in a non-polar viscous environment. Its relaxation
time is

τ =
4πηR 3

d

kT
, (17)
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where η and Rd are the dynamic viscousity of the material and the radius of the dipoles,
respectively.
The temperature dependence of the relaxation time follows that of the viscousity which is
determined by the Arrhenius equation

τ(T ) = τ0 exp
Ea

kT
. (18)

τ0 is the reciprocal frequency factor and Ea is the activation energy. A relaxation process
with these properties is called a Debye relaxation. By viewing Eq. (15) it is obvious that at
a given temperature the Debye process is completely determined by the quantities τ and ∆ε.

Checkpoint Calculate the explicit time dependence of PRel and of the displacement
current density J = ṖRel after applying a voltage step by solving Eq. (16)! Determine the
quantities τ and ∆ε from this solution.

Now the sinusoidal excitation will be considered in more detail. If the applied field is
given by

E(t) = Em exp(iωt) , (19)

then the stationary polarisation oscillates with the same angular frequency ω. However, it
is retarded by the angle φ:

PRel(t) = PRel,m exp[i(ωt + φ)] . (20)

The resonant part of the polarisation and the vacuum contribution to the electric dis-
placement are always in phase with the electric field. By considering this, the electric
displacement is

D(t) = PRel,m exp[i(ωt + φ)] + (PRes,m + DVac,m) exp(iωt) . (21)

with
(PRes,m + DVac,m) = ε0ε∞Em (22)

Finally, the current density is

J(t) =
dD(t)

dt
= iω[Prel(t) + ε0ε∞E(t)] (23)

However, we are more interested in the dielectric spectrum, where ω is the independent
quantity. Fourier transform of Eq. (20) gives

PRel(ω) =
PRel,s

1 + iωτ
. (24)

With Eq. (15) it follows that

D(ω) =
ε0(εs − ε∞)

1 + iωτ
E(ω) + ε0ε∞E(ω) (25)
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and with Eq. (6),

εr =
εs − ε∞
1 + iωτ

+ ε∞ . (26)

εr is a complex number defined as εr = ε′− iε′′. By separating εr into its real and imaginary
part, the Debye equations are obtained:

ε′ =
εs − ε∞
1 + ω2τ 2

+ ε∞ , ε′′ =
εs − ε∞
1 + ω2τ 2

ωτ . (27)

Though ε′ is only the real part of the relative permittivity it is usually called the permittiv-
ity. ε′ is a measure of the energy stored in the oscillations of the dipolar units. ε′′ is called
the dielectric loss, because it is related to the energy dissipation in the material due to
internal friction. The Debye equations describe the dielectric spectrum of a single Debye
relaxation.

With J = Ḋ the alternating current density follows as

J(ω) = iωε0εrE(ω) = iωD(ω) . (28)

The term iωε0εr defines the ac conductivity σac. Equation (28) is Ohm’s law.

If we measure the time dependence of the polarisation after a voltage step then we work
in the time domain. We measure the response function Prel(t) directly, however, to obtain
the dielectric spectrum we have to deconvolute the response function. In contradiction, the
measurement of J(ω) gives the dielectric spectrum εr(ω) directly. We are in the frequency
domain. The response function follows by convolution. These considerations remain valid
also for more complicated systems such as multiple relaxations or non-Debye dielectrics.

In practise, there is no ideal dielectric. The dc conductivity is always present and has
to be taken into account. Then with Eq. (28)

J(ω) = iωD(ω) + σdcE(ω) = iωε0ε̃rE(ω) (29)

with
ε̃r = ε′ − i(ε′′ +

σdc

ωε0

) (30)

Checkpoint Discuss the frequency dependence of the complex permittivity for a single
Debye relaxation in an ideal dielectric as well as by considering an additional dc conductiv-
ity! What follows for ω → 0, ω → ∞ and ω = 1/τ? How does the result have to be modified
in case of two Debye relaxations with different relaxation times as well as by considering a
charge carrier relaxation and the displacement polarisation!
Finally, discuss the Debye response on a logarithmic frequency scale! Calculate the half
width of the Debye peak on a double-logarithmic scale!
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ω

ε′

iε′′

ε∞ εs

φ

εr

0

∆ε

Figure 1: The locus of the complex permittivity in the Gaussian plane (Cole-Cole repre-
sentation)

Determination of the relaxation parameters ∆ε and τ of a single Debye relax-

ation

The characteristic parameters ∆ε and τ of a single Debye relaxation can be determined
from both quantities, ε′ and ε′′. The physical background is that in the time domain there
is of course exactly one response function, consequently, both quantities contain the full
information. They are related to each other through the Kramers-Kronig transformation.
The relaxation time τ can be determined from the position of the loss maximum or the
turning point of the permittivity curve, respectively. The relaxation strength is the differ-
ence between the limits of ε′(ω) for ω → 0 and ω → ∞ or twice of the maximum value
of ε′′(ω). In practice, however, it is often difficult to determine ∆ε and τ because real
dielectric spectra are generally broader than the Debye spectrum and their shape is not
pre-defined. Furthermore, the frequency range is often limited for technical reasons. Then,
the measurement of both parts of the permittivity gives more reliable information for a
proper determination of the relaxation parameters. Particularly, a useful way to obtain
these quantities is the so-called Cole-Cole representation. The locus of the complex number
εr in the complex plane is a semicircle in the fourth quadrant (Fig. 1):

(ε′ −
εs + ε∞

2
)2 + ε′′2 = (

εs − ε∞
2

)2 . (31)

From Eq. (31) and Fig. 1 follows

tan φ =
ε′′

ε′ − ε∞
= ωτ . (32)

In practice, ε′ and ε′′ are measured in a middle frequency range and plotted in the complex
plane. Then the semicircle is extrapolated to εs and ε∞. The relaxation time follows from
Eq. (32).
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Rdc

CRelRRel

C∞

Figure 2: R − C model of a homogeneous dielectric sample supplied with ideal electrical
contacts

Modelling of a dielectric sample

A real dielectric always contains bound charges as well as free charges. The former deter-
mine the displacement polarisation whereas the latter causes the dc conductivity. Now it is
assumed that additionally a Debye relaxation is present, that means, the dielectric contains
one kind of non-interacting dipoles which rotate in its non-polar viscous environment. If
it is further assumed that the dielectric is homogeneous then these three processes run
spatially parallel. This situation can be modelled with ideal resistors and ideal capacitors
(Fig. 2). Rdc represents the dc conductivity. C∞ represents the vacuum contribution and
the displacement contribution to the electric displacement, they follow the external field
nearly immediately. The series connection of RRel and CRel models the Debye relaxation.

Checkpoint Show that the current through the series connection of RRel and CRel after
applying a voltage step shows exactly the same time dependence like J = ṖRel (cf. Eq.(16)).

2.3 Eqivalent-circuit analysis

An arbitrarily shaped dielectric body with two metallic electrodes partially covering the
surface at opposite faces is connected to a voltage supply. Due to polarisation in the
material a change of the voltage dV induces a change of the charge dQ on the electrodes.
We define the capacitance of this device as

C = dQ/dV . (33)

This definition is quite general. It is valid e. g. for an interdigitated capacitor with planar
comb-like electrodes covered by a thin dielectric layer, or for an electrolytic capacitor,
where the dielectric is a thin oxide film on the surfaces of a sponge-like metallic body, or
for a p-n-junction in a semi-conducting material, where a dielectric region is formed by a
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depletion zone, depending on the applied voltage. However, if we focus on the properties of
the dielectric material, it is advisable to use a well-defined geometry such as a parallel-plate
capacitor. Assuming a linear and homogeneous dielectric, an intimate contact between the
electrodes and the material, and a homogeneous electric field, it can be easily derived that
the capacitance of the parallel-plate capacitor is

C = ε0εr

A

d
, (34)

where A and d are the electrode area and the sample thickness, respectively. Note, that
homogeneity of the field is only given for A � d2, so that fringing effects can be neglected.

Consider now an electrical circuit consisting of a generator V = Vm sin(iωt), a parallel-
plate capacitor and an ac ammeter connected in series. With Eq. (29), J = I/A and
E = V/d the current I = Im sin i(ωt + φ) flowing through the ammeter is

I(ω) = iωC̃(ω)V (ω) (35)

with the (complex) capacitance
C̃ = C ′ − iC ′′ (36)

C̃ also contains the dc conductivity (cf. Eq. (30)). Eq. (35) is again Ohm’s law (cf.
Eq. (28)). The quantity Y (ω) = iωC̃(ω) is called admittance, its reciprocal value Z(ω) =
1/Y (ω) is the impedance. The phase shift between I and V is usually expressed by the
loss angle δ = π/2 − φ. Another useful quantity is the loss factor

tan δ =
C ′′

C ′
=

ε′′

ε′
=

Z ′′

Z ′
=

Y ′

Y ′′
. (37)

ε′ is a measure of the energy stored whereas ε′′ is a measure of the energy dissipated
in the dielectric. Therefore, tan δ is also called the dissipation factor 2. It contains no
more information than ε′ or ε′′, but it is independent of the capacitor geometry. This is
particularly important if the capacitor geometry is not well defined. Furthermore, tan δ is
used as a measure of the sensitivity of a dielectric equipment. Recently, dielectric equipment
with tan δ ≈ 10−5 has become available, corresponding to a resolution of φ = 6 · 10−4 ◦.

Y (ω) and Z(ω) are complex numbers. Actually, we measure the absolute value together
with the phase angle φ or the real and imaginary parts.
Using the admittance it follows from Eqs. (35) and (36)

I(ω) = [G(ω) + iB(ω)]V (ω) , (38)

with the conductance G = Y ′ = ωC ′′ and the susceptance B = Y ′′ = ωC ′. Eq. (38) corre-
sponds to a situation with a fixed voltage V driving a current I which may be represented
by a component I ′ in phase with V and a component I ′′ preceding V by π/2 . Technically,

2The dissipation factor is frequently denoted with the symbol D, and Q = 1/D is called the quality

factor. However, we do not use these symbols here to avoid confusion with D used for the electric
displacement and Q used for the charge.
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1/G

B/ω

R 1/ωX

V

I
′′

=
iB

V

I
=

Y
V V ′

= RI

V
′′

=
−

iX
I

V
=

Z
I

I

I ′ = GV

Figure 3: Parallel and series equivalent circuits with the corresponding phasor diagrams

this situation is given by an equivalent circuit consisting of an ideal capacitor (without
loss) B(ω)/ω in parallel to an ideal resistor (representing the loss in the capacitor) 1/G(ω)
(Fig. 3).
Alternatively, using the impedance we may write

V (ω) = [R(ω) − iX(ω)]I(ω) , (39)

with the resistance R = Z ′ = C ′′/(ωC2) and the reactance X = Z ′′ = C ′/(ωC2). Eq. (39)
corresponds to a situation given by a constant current I in an equivalent circuit consisting
of an ideal resistor R(ω) with a voltage drop V ′ in phase with I in series with an ideal
capacitor 1/(ωX(ω)) with a voltage drop V ′′ delayed by π/2 (Fig. 3).
The background of this contemplation is that both equivalent circuits correspond to dif-
ferent physical situations. The parallel equivalent circuit (corresponding to the admittance
representation) is the natural representation of a situation where two or more physical
phenomena exist in parallel, such as conductivity and polarisation in a “leaky” capacitor.
The series equivalent circuit (corresponding to the impedance representation) is the natural
representation of a situation where processes occur in series, as in a capacitor with barrier
regions adjacent to a bulk with different conductivities and/or permittivities. Using the
expression Y = 1/Z it is of course possible to express Z by G and B or to express Y by
R and X. However, this leads to more complex expressions (wrong representations) and
should therefore be avoided.
These considerations are particularly important for a proper calculation of the permittivity.
Obviously, this is possible only if the admittance representation can be used because only
this representation corresponds to a homogeneous dielectric with a unique permittivity.
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Then, with Eq. (34), Eq. (36) and Eq. (38) it follows that

ε′ =
d

ε0A

B

ω
, ε′′ =

d

ε0A

G

ω
. (40)

Checkpoint Determine the capacitance C̃(ω) of the R−C model of a dielectric sample
(Fig. 2) and calculate the model parameters Rdc, C∞, RRel and CRel. Which representation
do you prefer, admittance or impedance?

Equivalent circuit analysis is the first step of the dielectric analysis. It can be par-
ticularly helpful in recognizing and separating in-series processes. The second step is the
determination of the relaxation parameters. Each process has to be considered separately
because the Debye equations hold only for a “single” relaxation. The third step is the phys-
ical interpretation of the experimentally determined dielectric function. This includes its
relation to processes occuring on the molecular scale, such as movements of certain molec-
ular species, dipole orientation and its stability, phase transitions or phase separation as
well as chemical reactions. Furthermore, the physical interpretation involves the calcu-
lation of quantities which are related to these processes: e. g. effective dipole moments,
such as pyroelectric and piezoelectric coefficients or the glass transition temperature. Of
course, the third step requires additional information from other experiments, particularly
thermal analysis and X-ray structural analysis.

Unfortunately, the dielectric response of liquids and solids generally deviates consider-
ably from the Debye type. The loss maxima are broader and generally asymmetric. The
reason is obvious: the Debye model does not include particle interactions; therefore it ap-
plies only to gases and dilute solutions. In condensed matter dipole-dipole interactions lead
to a distribution of relaxation times around a most probable value. For the presentation
and comparison of experimental data it is appropriate to modify Debye’s equations in such
a way that on the one hand the parameters ∆ε and τ retain their original meaning and on
the other hand the width and asymmetry of the loss peak are taken into account. Such an
empirical relaxation function is the Havriliak-Negami (HN) function:

εr =
εs − ε∞

[1 + (iωτ)α]β
+ ε∞ . (41)

0 < α ≤ 1 and 0 < β ≤ 1 are shape parameters describing the width and the asymmetry of
the loss peak, respectively. They have no physical meaning. Note that generally 1/τ 6= ωmax

where ωmax is the maximum position of a non-Debye peak. Thus, the complete description
of a relaxation process includes the calculation of four parameters: relaxation strength,
relaxation time and two shape parameters. Usually, this is performed by use of a least
squares fit of the HN function to the experimental loss function. This so-called HN analysis
is particularly useful for separating two superimposing relaxation processes as well as for
separating a concuctivity term from the low-frequency end of the overall spectrum.
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2.4 Temperature dependence of the relaxation time

Real loss peaks shift to higher maximum frequencies with increasing temperature because
the relaxation time decreases. This property is often used as a powerful tool to extend
the frequency range of dielectric spectroscopy indirectly by orders of magnitude. It can
be easily recognised particularly for the Debye relaxation. Inserting Eq. (18) into Eq. (26)
gives

εr =
εs − ε∞

1 + iωτ0 exp[Ea/(kT )]
+ ε∞ . (42)

This temperature dependence is much stronger than that of Curie’s law which can be
neglected. From Eq. (42) it is clear that for the Debye relaxation one obtains the same
graph whether one is plotting log εr versus log f at fixed T or log εr versus 1/T at fixed f .
This property is also called the time-temperature superposition principle. If the response
is not of the Debye type, then this is generally not true, and there is no unambiguous
way to relate the temperature dependence to the frequency dependence according to a
theoretical model. Thus, τ(T ) can only be determined from the frequency dependence.
Nevertheless, for an overview and for a more qualitative analysis it is frequently appropriate
to plot the real loss maxima versus temperature because they appear better resolved in
this representation.

2.5 Dielectric relaxation in polymers

Polymers are generally characterised by the presence of various dipolar units in different
environments. This leads to a broad distribution of relaxation times. The corresponding
loss peaks are usually extended over several frequency decades.
Starting isothermally at low frequencies generally the α relaxation is found which accom-
panies the glass transition in the amorphous part of the material, that is the onset of
segmental movements of the polymer chains. The loss peak of the α relaxation has an
asymmetric shape. Its temperature dependence obeys the Vogel-Fulcher-Tammann law
(VFT law) which can be derived from the theory of the glass transition:

τ(T ) = τ0 exp
Ta

T − TV

. (43)

τ0 and the activation temperature Ta are fit parameters and TV is the Vogel temperature
which is related to the dynamic glass-transition temperature. The asymmetric shape and
the VFT behaviour are typical features of a co-operative process. Generally, the α relax-
ation has the highest strength, therefore it is often called the primary or main relaxation
At higher frequencies the β relaxation is present which involves local intra-molecular move-
ments. It is sometimes followed by the γ relaxation of even smaller molecular units. Con-
sequently, they are called secondary relaxations. Finally, a δ relaxation due to isolated
molecules of impurities can be present at the high-frequency end of the spectrum. The
loss peaks of these processes are symmetric, and they show an Arrhenius temperature
dependence. These are typical features of a non-cooperative process.
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Dielectric spectroscopy can only determine the relaxation parameters of these pro-
cesses. A relation to movements of certain molecular species has to be found with the
help of detailed knowledge about the chemical synthesis and by additional non-dielectric
investigations. As an example, for partially crystalline polymers separate α and so-called
αc relaxations have to be distinguished, the latter originating from polymer chains in amor-
phous regions which are partly immobilized by pinning on crystals.

On the low-frequency end of the spectrum frequently a charge carrier relaxation ap-
pears, particularly in the presence of ionic impurities. It was already pointed out that
the movement of charged particles between boundaries (electrodes or phase boundaries) is
very efficient because it generates a large effective dipole moment due to larger charge dis-
placements than in case of rotating dipoles, and huge losses due to strong internal friction.
It can obscure the dipolar processes, and it is not typical for a special polymer. There-
fore, it should be avoided by carefully purifying the substance and carefully preparing the
electrical contacts. The charge carrier relaxations exhibit an Arrhenius temperature de-
pendence because they are closely related to the exponential temperature dependence of
the conductivity.

3 Experiment

3.1 Setup

The experimental setup is shown in Fig. 4. The device under test (DUT) is mounted in a
special sample holder for dielectric measurements which is directly connected to the input
terminals of the impedance analyser. The sample holder is part of a cryostat which belongs
to the QUATRO cryosystem. The DUT is heated and cooled with dry nitrogen gas. The
ac bridge as well as the cryosystem are fully remote controlled by a personal computer.
The measuring circuit is presented in Fig. 5 in simplified form. The DUT is part of an
auto-balancing bridge. The generator supplies the potential V1 at the high terminal of
the DUT. The zero-voltage detector detects the potential at the DUT’s low terminal and
controls magnitude and phase of the output V2 of the variable amplitude-phase generator
until the range-resistor current I2 and the DUT current I1 balance, and the potential at
the DUT’s low terminal becomes zero. With I1 = V1/Z, I2 = V2/R and the condition
I1 = −I2 the impedance of the DUT is

Z = −
V1

V2

R . (44)

The balancing operation is performed automatically over the full frequency range.
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Technical parameters of the setup:

� Generator V1 = 0 . . . 30 Vpp

� Frequency range 20 Hz. . . 1 MHz

� Sensitivity tan δ = 10−5

� Temperature range −170 . . . + 400 ◦C

� Accuracy of temperature adjustment ∆T = 0.01 K

� Maximum heating rate about 10 K/min

3.2 Samples

The RC circuit for the first task is mounted in a “black box” which can be easily placed
between the plates of the sample holder.

For the second task double-destilled and de-ionised water is used.

Checkpoint Liquid water is a near-Debye dielectric; it shows only slight but significant
deviations from the Debye equations. It would be well suited to verify the Debye model.
Unfortunately, this is not possible here for experimental reasons. Estimate the loss-peak
frequency of water at 20 ◦C ! The gas-kinetic radius of the H2O molecule is Rd = 230 pm
and the dynamic viscousity is η = 1.003 · 10−3 Nsm−2. (Dielectric spectra of water are
presented in [1] or [2])

Checkpoint Estimate the maximum possible dc conductivity of ice so that no loss peak
caused by a conductivity relaxation appears in the frequency range of our investigation!
Assume a Debye response for your calculation. The static dielectric constant of water is
about εs = 80 at room temperature.

The polymer for the third task is made of a thermoplastic polyurethane (TPU) where
certain non-polar chemical units are exchanged by a nitroaniline dye which forms strong
molecular dipoles.

Thermoplastic polyurethanes are prepared by a two-step polymerisation method in an
organic solvent: (1) preparation of an isocyanate-terminated prepolymer obtained by reac-
tion of an excess amount of an aromatic isocyanate with an oligomeric glycol in bulk
or in solution and (2) a diffusion-limited reaction of the prepolymer with a diamine.
Polyurethanes are two-phase systems consisting of soft and hard segments. The latter have
a crystal-like structure where the polyurethane chains lie parallel and which is stabilized
by hydrogen-bonds between the urethane groups. The hard segments (HS) are embedded
in the soft phase (Fig. 6). This structure shows only weak dielectric losses, particularly
above room temperature.
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Figure 6: Supramolecular structure of a polyurethane: hard segments embedded in the
soft phase

The incorporation of nitroaniline dipoles prevents the formation of hard segments and
produces a nearly amorphous structure. This can be recognised with differential-scanning
calorimetry (DSC). The DSC thermograms of dipole-free and dipole-containing films are
presented in Fig. 7. Instead of endothermal and exothermal peaks due to hard-segment
melting and crystallisation, respectively, in the film-material without dipoles, a glass tran-
sition at about 90 ◦C is observed in the dipole-containing film. It is accompanied by a
strong dielectric relaxation (α relaxation). It is assumed that its relaxation strength is
mainly determined by the dipole moment and the dipole concentration of the nitroaniline
dipoles.

All chemical components are shown in Fig. 8. The chemical components of the dipole-
free polymer are:

� Soft segments: polyoxytetramethylene, molecular weight about 1000 g/mol (PTHF
1000)

� Hard segments composed of:

– 4, 4′-methylene bis(phenylisocyanate) (MDI) as diisocyanate component

– butane-1, 4-diol (BD 1.4) as so-called chain extender

In the dipole containing polymer the BD 1.4 is partly substituted by the nitroaniline com-
pound bis-(2-hydroxyethyl)amino-4-nitrobenzene (BHEANB).

The BHEANB is a so-called A − π − D dipole. It consists of the amino group as elec-
tron donor and the nitro group as electron acceptor that are linked by the delocalized
π-electron system of the benzene ring. Due to donor-acceptor interaction the π-electron
system is asymmetrically deformed and a dipole moment is induced. Its value is 8.5 D
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Figure 7: DSC thermograms of the dipole-free (circles) and the dipole-containing (squares)
polyurethane films. Hard-segment melting and crystallisation on the dipole-free film as well
as the glass transition at about 90 ◦C on the dipole-containing film are clearly visible.
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Figure 8: Chemical components of the thermoplastic polyurethane
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(1 D = 3.34 · 10−30 Cm) determined by means of a quantum-chemical calculation (Spartan
program package with Austin model Hamiltonian).

The chemical composition of the dye-containing polymer used in the experiment is:
1 mol PTHF1000, 17.34 mol MDI, 8 mol BD 1.4, 8 mol BHEANB. The chemical reaction
is a polyaddition, there are no reaction products which go out.

Free standing films were made by coating with a doctor blade onto glass from N, N -
dimethylformamide (DMF) solution. The density of the films is ρ = 1.0 g/cm−3. The
reference substance is colourless whereas the dipole-containing film is yellow coloured due
to its nitroaniline-dye content. The films are thermally stable up to about 200 ◦C as
determined by thermogravimetric analysis.

3.3 Running the experiment

1. Turn on the cryosystem, the rotary pump and the vacuum gauge (vacuum is neces-
sary for thermal insulation) as well as the impedance meter. A vacuum of 0.01 mbar
is sufficient.
Turn on the computer, start Testpoint, click on mode run, go to the directory
DielSpec.

2. First task: The DUT is simply placed between the plates of the sample holder. Be
careful, the bottom electrode of the sample holder is not fastened! Do not overtighten
the precision screw! Put the sample holder into the cryostat and fasten the flange
with clamps. There are five terminals on the sample holder: 4× BNC, numbered 1-4,
1× LEMO. Connect the BNC sockets to the input terminals of the impedance meter
as follows:
BNC socket 1 to terminal Hcurr (High current),
BNC socket 2 to terminal Hpot (High potential),
BNC socket 3 to terminal Lcurr (Low current),
BNC socket 4 to terminal Lpot (Low potential).
Connect the LEMO socket with the QUATRO channel 4.
Run Spectrum. This program measures the spectrum at constant temperatures.
Choose an appropriate measuring quantity (impedance function). Run a single scan
from 20 Hz to 1 MHz at room temperature (without temperature control).

3. Second task: Fill double-distilled water into a special chamber for the investigation
of liquids. The electrodes are separated by a fused-silica spacer ring which deter-
mines the electrode diameter l and the electrode distance d. They are l = 16 mm
and d = 0.21 mm, respectively. The contribution of the spacer to the capacitance
can be neglected. Be careful particularly when handling the liquid-sample chamber;
the fused-silica spacer is mechanically extremly sensitive. Clean all electrodes with
alcohol before use. Avoid touching the electrode surfaces. After running the experi-
ment, remove the water and dry the chamber.
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Run Spectrum ice. This program measures the spectrum (the conductance G and
the susceptance B) at constant temperatures and calculates the real and imaginary
part of the permittivity. Enter the electrode distance and the electrode diameter.
The following parameters are recommended: temperatures -5 ◦C , -20 ◦C , -35 ◦C ;
frequency range 20 Hz to 1 MHz.

4. Third task: Two kinds of samples are used: first, the colour-less dipole-free reference
film; second, the yellow-coloured dipole-containing film. The films have already been
provided with evaporated aluminium contacts of about 50 nm thickness and 1.00 cm2

area. Measure the film thickness by use of a micrometer screw. Then mount the film
carefully between two polished stainless-steel plates of 1.00 cm2 area into the sample
holder.
Run Admittance. This program measures G and B at three fixed frequencies during
a slow linear temperature rise and calculates the real and imaginary part of the
permittivity. Enter the film thickness and the electrode diameter.
Recommended parameters: start temperature 20 ◦ C, end temperature 150 ◦ C,
heating rate 3.0 K/min, frequencies: f1 = 100 Hz, f2 = 500 Hz, f3 = 1 kHz.

5. After finishing the measurements power off the heaters, then turn off the impedance
meter, vacuum gauge, rotary pump and cryosystem. Vent the vacuum system by
opening the vacuum valve. Finally, close the vacuum valve.
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